
SUMS AND DIFFERENCES OF TWO CUBIC POLYNOMIALS

Trevor D. Wooley1

Abstract. When f(x) is a cubic polynomial with integral coefficients, we show that
almost all integers represented as the sum or difference of two values of f(x), with

x ∈ Z, are thus represented essentially uniquely.

1. Introduction

A sieve method of Hooley [4] shows that the representation of a number as the
sum of two non-negative integral cubes is almost always unique. Let ν(x) denote
the number of positive integers not exceeding x that have at least two essentially
distinct representations as the sum of two non-negative cubes. Then the sharper
estimate subsequently obtained by Hooley in [5] shows that ν(x) = Oε(x5/9+ε).
More recently, Wooley [6] has described an elementary proof of the latter estimate
which avoids the use of sieve methods, and this method has been refined by Heath-
Brown [3] to show that ν(x) = Oε(x4/9+ε). In common with the earlier sieve method
of Hooley [5], the argument applied by Heath-Brown [3] makes essential use of the
homogeneity of the associated polynomial x3

1 + x3
2 − x3

3 − x3
4, and thus neither of

the latter methods is directly capable of addressing corresponding inhomogeneous
questions concerning sums of two cubic polynomials. In this paper we investigate
sums and differences of a given cubic polynomial f(x) through the affine slicing
method of Wooley [6], deriving estimates of quality similar to those of Hooley [5]
and Wooley [6] in this inhomogeneous situation. In particular, we show that the
representation of a number as the sum or difference of two integral values of a cubic
polynomial is almost always unique.

In order to describe our conclusions we require some notation. When f(t) =
at3 + bt2 + ct+d is a cubic polynomial with integral coefficients, and x is a positive
real number, we define ν±f (x) to be the number of integers n with |n| ≤ x that
have at least two essentially distinct representations in the form n = f(x1)±f(x2),
for some integers x1 and x2. By “essentially distinct representation”, we mean a
representation which does not arise from the original representation by means of an
automorphism of the cubic polynomial f(x)±f(y). In this context we note that the
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cubic polynomial f(x) + f(y) has the unique non-trivial automorphism (x, y) −→
(y, x) over Z, and the polynomial f(x)−f(y) has no such non-trivial automorphisms
unless 3a|2b, in which case the latter polynomial possesses the unique automorphism
(x, y) −→ (−y − 2b/(3a),−x − 2b/(3a)). In §3 below we establish the following
estimate for ν±f (x).

Theorem 1. One has ν±f (x) = Oε,f (x5/9+ε).

As with previous treatments of sums of two cubes, we establish Theorem 1 by
estimating the number of non-trivial solutions of a suitable auxiliary equation. Two
further consequences of the estimate developed in §2 to establish Theorem 1 are
worthy of mention. When f(t) is the cubic polynomial described above, and P is
a positive real number, denote by Sf (P ) the number of integral solutions of the
equation

f(x1) + f(x2) = f(x3) + f(x4), (1.1)

with |xi| ≤ P (1 ≤ i ≤ 4). Also, let Tf (P ) denote the number of integral 4-tuples
x satisfying one of the conditions

{x1, x2} = {x3, x4} and 3a(x1 + x2) + 2b = 3a(x3 + x4) + 2b = 0, (1.2)

with |xi| ≤ P (1 ≤ i ≤ 4).

Theorem 2. One has Sf (P ) = Tf (P ) + Oε,f (P 5/3+ε).

Note that Tf (P ) counts the number of integral points with x ∈ [−P, P ]4 lying
on the union of the three affine planes defined in (1.2), whence Tf (P ) = (8+δ)P 2 +
O(P ), where δ = 4 when 3a|2b, and δ is zero otherwise.

Next, when g(s, t) = as3 + bs2t + cst2 + dt3 is a non-degenerate cubic form with
integral coefficients, and P is a positive real number, denote by Ng(P ) the number
of integral solutions of the equation

g(x1, x0) + g(x2, x0) = g(x3, x0) + g(x4, x0), (1.3)

with |xi| ≤ P (0 ≤ i ≤ 4). Also, let Mg(P ) denote the number of integral 5-tuples
x satisfying one of the conditions

{x1, x2} = {x3, x4} and 3a(x1 + x2) + 2bx0 = 3a(x3 + x4) + 2bx0 = 0, (1.4)

with |xi| ≤ P (0 ≤ i ≤ 4). In §4 we establish the following estimate for the number
of integral points on the cubic hypersurface determined by (1.3).

Theorem 3. When a 6= 0, one has Ng(P ) = Mg(P ) + Oε,g(P 7/3+ε).

Notice that Mg(P ) essentially counts the number of rational points lying on the
projective planes embedded in the hypersurface (1.3), whence Mg(P ) = κP 3 +
O(P 2) for a suitable real number κ satisfying κ ≥ 16. The precise value of κ is a
little more complicated to determine than the corresponding constant 8 + δ above,
and we choose not to calculate this value explicitly within this paper.
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We finish by noting that the mean value estimate provided by Theorem 2 has
applications to the problem of providing estimates for the number of values of a
given cubic polynomial which are not represented in the expected number of ways
as the sum of seven cubes of natural numbers. Such matters are discussed in §8
of Brüdern, Kawada and Wooley [1]. We avoid discussing details here, leaving it
to the reader to employ Theorem 2 within the latter methods so as to obtain the
desired conclusion.

Throughout this paper, implicit constants occurring in Vinogradov’s notation �
and�, and in Landau’s notation, will depend at most on the small positive number
ε, and quantities occurring as subscripts to the latter notations, unless indicated
otherwise. Also, we use vector notation for brevity. Thus, for example, the triple
(d1, d2, d3) will be abbreviated simply to d. In an effort to simplify our exposition,
we adopt the convention that whenever ε appears in a statement, we are implicitly
asserting that the statement holds for each ε > 0. Note that the “value” of ε may
consequently change from statement to statement.

2. The auxiliary equation

The object of this section is to provide an estimate for the number of solutions
of a certain auxiliary diophantine equation, this estimate being fundamental to our
proofs of Theorems 1 and 2, and motivating also our proof of Theorem 3. Our proof
of the aforementioned estimate borrows heavily from the treatment of Wooley [6],
but is complicated by the presence of more general cubic polynomials, and also the
possibility that the underlying variables may be either positive or negative. Before
proceeding further, we require some notation.

When a is an integer, denote by t(x; a) the polynomial x3 + ax. Let X be a
real number sufficiently large in terms of a, and denote by Ua(X) the number of
integral solutions of the equation

t(x1; a) + t(x2; a) = t(x3; a) + t(x4; a), (2.1)

with
|t(x1; a) + t(x2; a)| = |t(x3; a) + t(x4; a)| ≤ X, (2.2)

{x1, x2} 6= {x3, x4}, x1 + x2 6= 0, x3 + x4 6= 0. (2.3)

Lemma 2.1. One has Ua(X) � X5/9+ε.

Proof. Let Ta(P,Q1, Q2;h) denote the number of integral solutions of the simulta-
neous equations

t(x1; a) + t(x2; a) = t(x3; a) + t(x4; a)
x1 + x2 = x3 + x4 + h

(2.4)

with xi 6∈ {x3, x4} (i = 1, 2),

Q1 ≤ |x1| ≤ |x2| ≤ 2Q1, Q2 ≤ |x3| ≤ |x4| ≤ 2Q2, (2.5)

1 ≤ |x1 + x2| ≤ min{P 3Q−2
1 , 4Q1}, 1 ≤ |x3 + x4| ≤ min{P 3Q−2

2 , 4Q2}. (2.6)
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Observe on the one hand that when h = 0, it follows from (2.4) that

xi
1 + xi

2 = xi
3 + xi

4 (i = 1, 3),

whence x1 + x2 = x3 + x4 = 0 or {x1, x2} = {x3, x4}. Suppose, on the other
hand, that h 6= 0 and yet x1 = x3 or x1 = x4, or else x2 = x3 or x2 = x4. By
relabelling variables, there is no loss of generality in supposing that x2 = x4, and
then it follows from (2.4) that one has

x3
1 + ax1 = x3

3 + ax3 and x1 = x3 + h. (2.7)

Thus, since the hypothesis h 6= 0 implies that x1 6= x3, we deduce that

x2
1 + x1x3 + x2

3 + a = 0.

The number of integral solutions of the latter equation is O(1 + |a|ε) (see, for
example, Estermann [2]), and given any fixed choice for x1 and x3, one finds from
(2.7) that h is uniquely determined. Thus we conclude that the total number
of solutions x, h of the system (2.4) satisfying (2.5) and (2.6), with h 6= 0 and
xi ∈ {x3, x4} for i = 1 or 2, is O(min{Q1, Q2}).

Next we observe that since

4(t(x; a) + t(y; a)) = (x + y)(3(x− y)2 + (x + y)2 + 4a),

it follows that whenever
|t(x; a) + t(y; a)| ≤ X

and X is large, then necessarily

|x + y|max{|x|2, |y|2} ≤ 4X.

Suppose then that x is any solution of (2.1) satisfying (2.2) and (2.3). By relabelling
variables we may suppose that |x1| ≤ |x2| and |x3| ≤ |x4|. Thus, if x satisfies the
additional condition (2.5), then we have

1 ≤ |x1 + x2| ≤ min{4XQ−2
1 , 4Q1} and 1 ≤ |x3 + x4| ≤ min{4XQ−2

2 , 4Q2}.

Interchanging the roles of {x1, x2} and {x3, x4} if necessary, we therefore deduce
that when X is large, one has

Ua(X) � (log X)3 max
1≤Q2≤Q1≤2X1/2

1≤H≤8X1/3

(
Q1 +

∑
H≤|h|≤2H

Ta(2X1/3, Q1, Q2;h)
)
. (2.8)

Suppose next that Q2 ≤ Q1, let h be a non-zero integer, and let x be any solution
of the system (2.4) counted by Ta(P,Q1, Q2;h). Plainly,

(x1 + x2 − x3)3 − (t(x1; a) + t(x2; a)− t(x3; a)) = (x4 + h)3 − t(x4; a).
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On making the substitution

u1 = x1 + x2, u2 = x1 − x3, u3 = x2 − x3, y = 2x4 + h,

moreover, one finds that the xi are uniquely determined from the integers uj , y and
h. It follows that Ta(P,Q1, Q2;h) is bounded above by V4a(P,Q1, Q2;h), where
Vb(P,Q1, Q2;h) denotes the number of solutions of the system

12u1u2u3 = h(3y2 + h2 + b)
u1 + u2 + u3 = y + h

(2.9)

with

1 ≤ |u1| ≤ P 3Q−2
1 , 1 ≤ |u2| ≤ 4Q1, 1 ≤ |u3| ≤ 4Q1, |y| ≤ 8Q1. (2.10)

Let V
(1)
b (P,Q1, Q2;h) denote the number of solutions of the system (2.9) satis-

fying (2.10) and the condition

h2 + 3(ui − uj)2 + b = 0 (2.11)

for some i and j with 1 ≤ i < j ≤ 3. Also, let V
(2)
b (P,Q1, Q2;h) denote the number

of solutions of the system (2.9) satisfying (2.10) and the condition

3u2
i − 3hui + h2 + b = 0 (2.12)

for some i with 1 ≤ i ≤ 3. Finally, denote by V
(3)
b (P,Q1, Q2;h) the number of

solutions of the system (2.9) satisfying (2.10), and neither (2.11) nor (2.12) for any
i, j with i 6= j. Then plainly,

Vb(P,Q1, Q2;h) ≤
3∑

i=1

V
(i)
b (P,Q1, Q2;h). (2.13)

We first bound
W1 =

∑
H≤|h|≤2H

V
(1)
b (P,Q1, Q2;h). (2.14)

Let u, y, h be a solution of the system (2.9) counted in the latter sum. Then without
loss of generality we may suppose that (2.11) holds with i = 1 and j = 2. If b ≥ 0,
then there are plainly no solutions with h 6= 0. If b < 0, meanwhile, then the
number of possible choices for h and u1 − u2 is O(|b|ε), by making use of estimates
for the number of representations of an integer by a binary quadratic form (see
Estermann [2]). Fix any one such choice, and any one of the O(Q1) possible choices
for u2. Then we may eliminate y between the two equations of the system (2.9),
and deduce that u3 satisfies a non-trivial polynomial equation. Thus there are O(1)
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possible choices for u3, and by back substitution there are also O(1) possible choices
for y. Thus the total number of solutions in this case is

W1 � Q1|b|ε. (2.15)

Next we tackle
W2 =

∑
H≤|h|≤2H

V
(2)
b (P,Q1, Q2;h). (2.16)

Let u, y, h be a solution of the system (2.9) counted in the latter sum. Then without
loss of generality we may suppose that (2.12) holds with i = 1, and hence that

3(2u1 − h)2 + h2 + 4b = 0.

If b ≥ 0, then there are no solutions of the latter equation with h 6= 0. If b < 0,
on the other hand, we find that the number of possible choices for h and 2u1 − h
is O(|b|ε) in a similar manner to the case above. Fix any one such choice, and any
of the O(Q1) possible choices for y. Then the first equation of (2.9) shows that
u1, u2, u3 are divisors of the fixed integer h(3y2 + h2 + b). The latter integer is
non-zero, moreover, because the conditions (2.10) ensure that 12u1u2u3 6= 0. Thus
a standard estimate for the divisor function shows that the number of possible
choices for u is O((|b|HQ1)ε), whence

W2 � Q1+ε
1 (|b|H)ε. (2.17)

Finally we negotiate the estimation of V
(3)
b (P,Q1, Q2;h). Let h be a non-

zero integer, and suppose that u, y is a solution of the system (2.9) counted by
V

(3)
b (P,Q1, Q2;h). Write

d3 = (u3, h), d2 = (u2, h/d3), d1 = (u1, h/(d2d3)),

g = h/(d1d2d3), f = 12/g and vi = ui/di (1 ≤ i ≤ 3).

It follows from (2.9) that f and g are integers, and thus we conclude that ui = vidi

(1 ≤ i ≤ 3), and
h = gd1d2d3, fg = 12. (2.18)

On recalling (2.11) and (2.12), moreover, we have also the conditions

(gd1d2d3)2 + 3(divi − djvj)2 + b 6= 0 (1 ≤ i < j ≤ 3), (2.19)

3(divi)2 − 3(gd1d2d3)(divi) + (gd1d2d3)2 + b 6= 0 (1 ≤ i ≤ 3). (2.20)

On substituting into (2.9), and eliminating y by employing the linear equation, we
deduce that V

(3)
b (P,Q1, Q2;h) is bounded above by W3(h), where W3(h) denotes

the number of solutions of the system

fv1v2v3 = 3(d1v1 + d2v2 + d3v3 − gd1d2d3)2 + (gd1d2d3)2 + b, (2.21)
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with v,d, f and g satisfying (2.18)-(2.20), and

1 ≤ |v1| ≤ P 3(d1Q
2
1)
−1, 1 ≤ |v2| ≤ 4Q1d

−1
2 , 1 ≤ |v3| ≤ 4Q1d

−1
3 . (2.22)

For a fixed non-zero integer h, an elementary divisor function estimate reveals
that the number of possible choices for f, g,d satisfying (2.18) is O(|h|ε). Fix any
one such choice, and consider a fixed choice of v1 satisfying (2.22) and the inequality
(2.20) with i = 1. Consider now any solution v2, v3 of the equation (2.21) satisfying
(2.22) and the inequality (2.19) with i = 2 and j = 3. The equation (2.21) takes
the shape

6d2
2v

2
2 + 6d2

3v
2
3 + 2Av2v3 + 12Bd2v2 + 12Bd3v3 + C = 0, (2.23)

where

A = 6d2d3 − fv1, B = d1v1 − gd1d2d3, C = 6B2 + 2(gd1d2d3)2 + 2b.

Notice that necessarily one has

d1v1 − gd1d2d3 6= 0, (2.24)

for otherwise it follows from (2.21) that

(gd1d2d3)2 + 3(d2v2 − d3v3)2 + b = 0,

contradicting (2.19) when i = 2 and j = 3. Next, on completing the square we
obtain from (2.23) the equation

Φ2 + DΨ2 = n, (2.25)

where

D = 36d2
2d

2
3 −A2, n = (36d2

2d3B − 6d2AB)2 −D(6d2
2C − 36d2

2B
2),

Φ = Dv3 + 36d2
2d3B − 6d2AB, Ψ = 6d2

2v2 + Av3 + 6d2B.

A modest calculation reveals that

D = −f2v1(v1 − gd2d3),

and so it follows from (2.24) that D 6= 0. Thus the map (v2, v3) −→ (Φ,Ψ) is one-
to-one. It follows that the number of possible choices of v2 and v3 satisfying the
above system is bounded above by the number of integral solutions of the equation
(2.25) with |Φ| ≤ (100X)3 and |Ψ| ≤ (100X)3. But D 6= 0, and a further modest
calculation shows that

n = 3(fd2)2v1(v1 − gd2d3)
(
3(2d1v1 − gd1d2d3)2 + (gd1d2d3)2 + 4b

)
,
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whence by (2.24) and (2.20) with i = 1, one has n 6= 0. Then it follows from the
elementary theory of binary quadratic forms (see Estermann [2]) that the number
of permissible choices for Φ and Ψ is O(P ε), whence the total number of permissible
choices for v1, v2, v3 is

�
∑

1≤|v1|≤P 3(d1Q2
1)
−1

P ε � P 3+ε(d1Q
2
1)
−1.

By interchanging the roles of (v1, v2, v3) with (v2, v3, v1), and with (v3, v1, v2) re-
spectively, one deduces in a similar fashion that the number of permissible choices
for v1, v2, v3 is

�
∑

1≤|v2|≤4Q1d−1
2

P ε � P εQ1d
−1
2 ,

and also is
�

∑
1≤|v3|≤4Q1d−1

3

P ε � P εQ1d
−1
3 .

By combining the latter three bounds, we may conclude that the number of possible
choices for v1, v2, v3 is

�
(
(P 3+ε(d1Q

2
1)
−1)(P εQ1d

−1
2 )(P εQ1d

−1
3 )

)1/3

� P 1+ε(d1d2d3)−1/3 � P 1+ε|h|−1/3.

Collecting our conclusions thus far together, we have

W3(h) � P 1+ε|h|ε−1/3,

whence by (2.13)-(2.17),∑
H≤|h|≤2H

Vb(P,Q1, Q2;h) � Q1+ε
1 (|b|H)ε +

∑
H≤|h|≤2H

P 1+ε|h|ε−1/3

� P 1+εH2/3+ε + Q1+ε
1 Hε.

Finally, from (2.8) we deduce that

Ua(X) � Xε(X1/2 + X5/9) � X5/9+ε,

and this completes the proof of the lemma.

3. The proof of Theorems 1 and 2

A linear change of variables reveals that Theorems 1 and 2 are essentially im-
mediate consequences of Lemma 2.1, as we presently demonstrate. We begin with
the proof of Theorem 2, which is more transparent than that of Theorem 1.
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The proof of Theorem 2. Let f(s) = as3 + bs2 + cs + d be a cubic polynomial with
integral coefficients. Then plainly a 6= 0, and

27a2f(s) = (3as + b)3 + A(3as + b) + B, (3.1)

where
A = 9ac− 3b2 and B = 27a2d− 9abc + 2b3. (3.2)

It follows that the equation (1.1) holds if and only if

t(y1;A) + t(y2;A) = t(y3;A) + t(y4;A), (3.3)

where we write yi = 3axi + b (1 ≤ i ≤ 4). Since the conditions (1.2) are equivalent,
under the above change of variables, to the new conditions

{y1, y2} = {y3, y4} and y1 + y2 = y3 + y4 = 0, (3.4)

we deduce from (2.1)-(2.3) that

Sf (P )− Tf (P ) ≤ UA(X),

where X is a positive real number satisfying X � P 3 (and here the implicit constant
depends at most on a, b, c). Thus we deduce from Lemma 2.1 that

Sf (P )− Tf (P ) � P 5/3+ε,

and this completes the proof of Theorem 2.

The proof of Theorem 1. We make use of the same notation as that applied in the
proof of Theorem 2, and begin by observing that ν+

f (x) is equal to the number of
integers n with |n| ≤ x for which the diophantine equation

n = f(x1) + f(x2) = f(x3) + f(x4) (3.5)

is soluble with {x1, x2} 6= {x3, x4}. Also, on noting that when

3a(x1 + x2) + 2b = 0, (3.6)

then it follows from (3.1) that

27a2(f(x1) + f(x2)) = 2B,

we find that there is at most one integer n satisfying (3.5) and (3.6) which con-
tributes to ν+

f (x). Following the change of variables leading to (3.3), therefore, and
recalling (2.1)-(2.3), we obtain

ν+
f (x) ≤ 1 + UA(27a2x),
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whence we conclude from Lemma 2.1 that ν+
f (x) � x5/9+ε. This completes the

proof of Theorem 1 in the first case.
In the second case, we observe that ν−f (x) is equal to the number of integers n

with |n| ≤ x for which the diophantine equation

n = f(x1)− f(x2) = f(x3)− f(x4) (3.7)

is soluble with

(x1, x2) 6= (x3, x4) and (x3, x4) 6= (−x2 − 2b/(3a),−x1 − 2b/(3a)).

On noting that when x1 = x2 one necessarily has f(x1) − f(x2) = 0, we find
that there is precisely one integer, namely 0, satisfying (3.7) and x1 = x2 which
contributes to ν−f (x). Following the change of variables leading to (3.3), therefore,
and replacing yi by −yi therein for i = 2, 4, it follows from (2.1)-(2.3) that

ν−f (x) ≤ 1 + UA(27a2x).

The desired conclusion ν−f (x) � x5/9+ε again follows from Lemma 2.1, and this
completes the proof of Theorem 1 in the second case.

4. A homogeneous equation

We next attend to the proof of Theorem 3. Let g(s, t) = as3 + bs2t + cst2 + dt3

be a non-degenerate cubic form with integral coefficients, and with a 6= 0. Observe
first that

27a2g(s, t) = (3as + bt)3 + A(3as + bt)t2 + Bt3,

where A and B are given by (3.2). Since a 6= 0, the mapping x −→ y given by
yi = 3axi + bx0 (1 ≤ i ≤ 4) and y0 = x0, is one-to-one. Also, the conditions (1.4)
are equivalent under the above change of variables to the the new conditions (3.4).
Denote by τα(x; z) the polynomial x3 +αxz2. Then on recalling the notation of §1,
we may conclude thus far that

Ng(P )−Mg(P ) ≤ U∗
A((3|a|+ |b|)P ), (4.1)

where U∗
A(X) denotes the number of integral solutions of the equation

τA(y1; y0) + τA(y2; y0) = τA(y3; y0) + τA(y4; y0), (4.2)

with |yi| ≤ X (0 ≤ i ≤ 4), and with y satisfying none of the conditions (3.4).
When A = 0 the equation (4.2) becomes y3

1 + y3
2 = y3

3 + y3
4 . Work of Heath-

Brown [3] shows that the number of integral solutions y1, y2, y3, y4 of the latter
equation with |yi| ≤ X (1 ≤ i ≤ 4), and with none of the conditions (3.4) holding,
is O(X4/3+ε). On summing over the permissible choices for y0, we therefore find
that

U∗
0 (X) � X7/3+ε. (4.3)
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We may consequently suppose henceforth that A is non-zero.
Observe that for each fixed choice of y0, the equation (4.2) takes the shape

(2.1). We may therefore imitate the proof of Lemma 2.1, regarding y0 as fixed and
ultimately summing over the available choices for y0. On noting that each variable
lies in [−X, X] instead of the more liberal range implied by (2.2), we arrive at the
estimate

U∗
A(X) � X2+ε + (log X) max

1≤H≤2X

∑
H≤|h|≤2H

W (h), (4.4)

where W (h) denotes the number of solutions of the system

fv1v2v3 = 3(d1v1 + d2v2 + d3v3 − gd1d2d3)2 + (gd1d2d3)2 + 4Aw2, (4.5)

with w,v,d, f and g satisfying (2.18) and

|w| ≤ X, 1 ≤ |vi| ≤ 2X/di (1 ≤ i ≤ 3). (4.6)

For a fixed non-zero integer h, an elementary divisor function estimate shows
that the number of possible choices for f, g,d satisfying (2.18) is O(|h|ε). Fix any
one such choice, and let W1(f, g,d) denote the number of solutions v, w of (4.5)
with (4.6), and satisfying the additional equation

(gd1d2d3)4 = 12(divi)(djvj)(divi − gd1d2d3)(djvj − gd1d2d3), (4.7)

for some i and j with 1 ≤ i < j ≤ 3. Let W2(f, g,d) denote the corresponding
number of solutions in which (4.7) is satisfied for no i and j with 1 ≤ i < j ≤ 3.

Given a solution v, w counted by W1(f, g,d), we may relabel variables in such
a way that, without loss of generality, the equation (4.7) holds with i = 1 and
j = 2. On noting that the left hand side of (4.7) is a fixed non-zero integer, a
standard divisor function estimate reveals that the number of possible choices for
v1 and v2 is O(|h|ε). Fixing any one such choice, the variables v3 and w satisfy the
non-trivial equation (4.5). Thus, given any fixed choice of w, we find that there are
O(1) possible choices for v3, and consequently,

W1(f, g,d) � |h|εX. (4.8)

Consider next a solution v, w counted by W2(f, g,d). For any fixed choice of
v1, v2 satisfying (4.6), consider any solution w, v3 of the equation (4.5) satisfying
(4.6). The equation (4.5) takes the shape

Φ2 + 3AΨ2 = n, (4.9)

with

n =(fv1v2 − 6d3(d1v1 + d2v2 − gd1d2d3))2 − 3(2gd1d2d
2
3)

2

− 36d2
3(d1v1 + d2v2 − gd1d2d3)2,
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Φ = 6d2
3v3 − fv1v2 + 6d3(d1v1 + d2v2 − gd1d2d3), Ψ = 4d3w.

Since n takes the shape

n = f2v1v2(v1 − gd2d3)(v2 − gd1d3)− 12(gd1d2)2d4
3,

and (4.7) is not satisfied with i = 1 and j = 2 in the present circumstances, one
necessarily has that n is non-zero. Plainly, moreover, the map (v3, w) −→ (Φ,Ψ)
is one-to-one. It follows that the number of possible choices of v3 and w satisfying
the system (4.5), (4.6) is bounded above by the number of integral solutions of
the equation (4.9) with |Φ| ≤ (100X)2 and |Ψ| ≤ (100X)2, whence the elementary
theory of binary quadratic forms (see Estermann [2]) shows that the number of
permissible choices for Φ and Ψ is O(Xε). Hence the total number of permissible
choices for w,v is

�
∑

1≤|v1|≤2X/d1

∑
1≤|v2|≤2X/d2

Xε � X2+ε(d1d2)−1.

By interchanging the roles of the vi, one deduces similarly that the number of
permissible choices for w,v is

� X2+ε min{(d2d3)−1, (d3d1)−1}.
By combining the latter estimates, we may conclude that

W2(f, g,d) � |h|εX2+ε ((d1d2)(d2d3)(d3d1))
−1/3 � X2+ε|h|ε−2/3,

so that on recalling (4.8), we obtain the upper bound

W (h) � |h|εX + X2+ε|h|ε−2/3.

On recalling (4.3) and (4.4), therefore, we deduce that

U∗
A(X) � X7/3+ε + X2+ε max

1≤H≤2X

∑
H≤|h|≤2H

(X−1 + |h|−2/3) � X7/3+ε,

whence by (4.1),
Ng(P )−Mg(P ) � P 7/3+ε.

This completes the proof of Theorem 3.
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